Impact of STK11 mutation on first-line immune checkpoint inhibitor outcomes in a real world **KRAS G12C mutant lung adenocarcinoma cohort**

Rebecca S. Heist, MD, MPH¹, Junhua Yu, MS, PhD², Elifnur Yay Donderici, PhD², Nicole J. Zhang, MPH², Carin R. Espenschied, MS², Kathryn Lang, MD, MRes², Beata Korytowsky, MA³, Andrew S. Chi, MD, PhD³, James Christensen, PhD³

1Department of Medical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA; 2Guardant Health, Inc., Redwood City, CA, USA; 3Mirati Therapeutics, Inc., San Diego, CA, USA

Background

- KRASG12C mutation occurs in about 14% of non-small cell lung cancer (NSCLC) patients (pts), and approximately 12% of all NSCLC pts have alterations in STK11 gene. There is significant correlation towards co-occurrence of KRAS and STK11 in lung adenocarcinoma (LUAD).1-5
- The introduction of KRAS G12C inhibitors into clinical trials has demonstrated promise and may provide a new therapeutic option for pts harboring KRAS G12C mutations.
- Immune checkpoint inhibitors (ICI) have shown benefit in LUAD pts whose cancer harbor KRASG12C; however, outcomes data on the impact of co-occurring STK11 mutations are conflicting.6,7
- · This study utilized the Guardant INFORM real-world clinical-genomic database to assess the impact of co-occurring STK11 mutations on outcomes in pts with KRAS G12C mutant LUAD treated with a first-line (1L) ICI containing regimen.

Methods

Data Sources

- · Guardant INFORM is a nationally representative U.S. healthcare claims clinical-genomic dataset covering over 137,000 advanced/metastatic cancer pts with reported results of circulating tumor DNA (ctDNA) test by Guardant360.8 Over 80% are linked to treatment and procedural data. Patient's blood collection date of ctDNA tests ranges between March 11, 2014 and June 25, 2020.
- Death data is sourced from third party providers and aggregated with administrative claims data and is available for at least half of the CDC-reported deaths in the country.

Study Design

· Retrospective matched cohort observational real-world study evaluating patient outcomes.

Primary Endpoint

- * Time to next treatment (TTNT) of 1L ICI, defined as the time from initiation of 1L ICI regimen to the first administration of subsequent line of treatment (LOT) or to patient date of death, whichever occurred first. Pts without any subsequent LOT were censored at their last known activity.
- Real-world overall survival (rwOS) since index date, defined as time from the earliest ctDNA test report date of KRASG12C to date of death. Pts without known date of death were censored at their last documented claim date

Secondary Endpoints

. Time to treatment discontinuation (TTD) of 1L ICI, defined as time from 1L ICI initiation to the discontinuation of 1L ICI (the date of last administered dose of 1L ICI). Discontinuation events include having a gap of more than 90 days with no subsequent LOT; having a subsequent LOT; or having a date of death while on 1L ICI regimen, whichever occurred first.

Key Inclusion Criteria

- · Adult pts treated in the United States
- . At least one Guardant360 test with LUAD entered as cancer type on test requisition form
- · At least one claim with lung cancer diagnosis ICD-10 code during baseline period, defined as the six month period prior to index
- KRAS G12C mutations detected via Guardant360 test
- Record of 1L PD-1/PD-L1 (including pembrolizumab, atezolizumab, durvalumab or nivolumab) ± chemotherapy (including carboplatin, cisplatin, pemetrexed, paclitaxel, gemcitabine) after first KRASG12C detection
- At least 90 days follow-up
- · At least two pharmacy claims during the follow up period
- Confirmed metastatic status during the period of 60 days prior or after index, defined as secondary malignancy ICD-9 or ICD-10 diagnosis code, or claims with metastatic agents.

Exclusion Criteria

- · Pts with primary cancer site other than lung and skin (basal, squamous cell carcinoma)
- Pts who received ipilimumab alone or in combination with other ICI and/or chemotherapy agents in 1I
- · Pts who received tyrosine kinase inhibitors (TKI) prior to index

Statistical Analyses

 A cohort of pts without KRAS^{G12C}, including KRAS wildtype (wt) pts and pts with other KRAS mutations, were matched on 3:1 ratio. The following characteristics were incorporated into the matching process: age, gender, year of index and baseline Elixhauser Comorbidity Index (ECI).

- Time-to-event analyses were performed using Kaplan-Meier analyses and Cox proportional hazards regression models, to compare the impact of STK11 mutations in the KRASG12C cohort, and matched cohorts without KRASG12C
- · A sensitivity analysis using maximum permissible gap of 60, 90, or 120 days was conducted to determine the robustness of this definition of discontinuation.

Results

- Two groups were constructed based on the inclusion, exclusion and cohort matching criteria. 330 LUAD pts with KRASG12C and 938 matched LUAD pts without KRASG12C detected were included
- 754 pts (80%) of the matched cohort were KRAS wildtype (wt), of whom 6% (n=49) had STK11 mutations (mt).

Figure 1. Detection rate of STK11 mutations

20% 30% 40% 50% 60% 70% 80% 90% 100%

STK11 mt STK11 wt

Table 1. Patient demographics and baseline characteristics by KRASG12C and STK11 status

		<i>STK11</i> wt (n=260)	<i>STK11</i> mt (n=70)	p-value
	Age, mean (SD)	68 (10.3)	63.3 (10)	0.0008*
đ	ECI, mean (SD)	5.7 (3.0)	5.3 (2.7)	0.31
KRAS ₆₁₂ c LU/	Age group, n(%)			
	<50	12 (4.6%)	6 (8.6%)	0.055
	50-64	97 (37.2%)	34 (48.6%)	
	65+	152 (58.2%)	30 (42.9%)	
	Female, n(%)	160 (61.3%)	40 (57.1%)	0.53
	Known to be deceased, n(%)	48 (18.4%)	28 (40%)	0.0001*
		<i>STK11</i> wt (n=854)	<i>STK11</i> mt (n=84)	p-value
nt	Age, mean (SD)	68 (10.3)	66.1 (8.8)	0.19
itho	ECI, mean (SD)	7.2 (3.2)	7.0 (3.2)	0.54
hort wi Seizc	Age group, n(%)			
S ₆₁	<50	35 (4.1%)	2 (2.4%)	0.73
d Cohor (RASe)	<50 50-64	35 (4.1%) 311 (35.4%)	2 (2.4%) 32 (38.1%)	0.73
hed Cohor KRAS ₆₁	<50 50-64 65+	35 (4.1%) 311 (35.4%) 508 (59.5%)	2 (2.4%) 32 (38.1%) 50 (59.9%)	0.73
latched Cohor KRASat	<50 50-64 65+ Female, n(%)	35 (4.1%) 311 (35.4%) 508 (59.5%) 527 (61.7%)	2 (2.4%) 32 (38.1%) 50 (59.9%) 45 (53.6%)	0.73
Matched Cohor KRASot	<50 50-64 65+ Female, n(%) Known to be deceased, n(%)	35 (4.1%) 311 (35.4%) 508 (59.5%) 527 (61.7%) 215 (25.2%)	2 (2.4%) 32 (38.1%) 50 (59.9%) 45 (53.6%) 28 (33%)	0.73

Table 2. Multivariate Cox proportional hazard model of time-to-event endpoints

Cohort	Endpoints	HR* (95% CI) <i>STK11</i> wt vs. mt	p-value
KRAS _{G12C} (n=330)	TTNT	2.7 (1.8, 4.0)	<.0001
	TTD	1.4 (1.0, 2.0)	0.03
(11 000)	rwOS	3.2 (2.0, 5.1)	<.0001
No KRASoura	TTNT	1.7 (1.2 2.5)	0.02
(n=938)	TTD	1.5 (1.0, 2.2)	0.007
(11-556)	rwOS	1.8 (1.2, 2.8)	0.004
KBASut	TTNT	1.7 (1.1, 2.6)	0.02
(n=754)	TTD	1.4 (1.0, 2.0)	0.08
(1-734)	rwOS	1.4 (0.8, 2.4)	0.3

idence internal; HR, hazard ratio; n, number of patients within a group Adjusted according to age group, gender and ECI

- Patient demographics and baseline characteristics of both KRAS^{G12C} cohort and the matched cohort are presented respectively, in Table 1.
- Over 21% of LUAD pts with KRAS^{G12C} have co-occurring mutations in STK11 gene, while only 6% of KRAS wt pts and 9% of pts without KRASG12C also have STK11 mutations.
- In the KRASG12C cohort. pts with STK11 mutations had statistically significant shorter TTNT (hazard ratio [HR] 2.7, 95% confidence internal [CI] 1.8-4.0, p<0.0001), TTD (HR 1.4, 95% CI 1.0-2.0, p<0.04) and rwOS (HR 3.2, 95% CI 2.0-5.1, p<0.0001) than pts without STK11 mutations. (Table 2). Median TTNT was over four times shorter and median TTD was almost two times shorter in STK11 mt vs. STK11 wt pts (TTNT: 224 vs. 975 days; TTD: 172 vs. 232 days).
- In the matched no KRAS^{G12C} cohort, pts with STK11 mutations had statistically significant shorter TTNT, TTD and OS than pts without STK11 mutations; however adjusted HRs of TTNT and rwOS were lower compared to those of the KRASG12C cohort (Table 2).
- In the matched KRAS wt cohort, the differences in TTD and OS in pts with vs. without STK11 mutation did not reach statistical significance (Table 2).
- In the KRASG12C cohort, Median rwOS was not reached in the STK11 wt KRASG12C cohort; however, adjusted hazard ratio (HR) from Cox regression model showed STK11 mt pts were 3.2 more times likely to die compared to STK11 wt pts.
- · Findings were consistent across sensitivity analyses on the maximum permissible gaps.

Figure 2. Kaplan-meier analysis of real-world outcomes of 1L ICI regimen in LUAD with KRASG12C by STK11 status

6

4

Ω

STK11 mt

70

32

Figure 3. Kaplan-meier analysis of real-world outcomes of 1L ICI regimen in KRAS wt LUAD by

Conclusion

STK11 status

- This study provides real-world evidence that KRASG12C and STK11 co-mutations are associated with poor outcomes in pts treated with ICI in 1L.
- · These inferior outcomes indicate a high unmet medical need among LUAD pts harboring cooccurring KRASG12C and STK11 mutations and demonstrate the need for effective targeted and/or combination therapies in this patient population.

References

- Zehir A, et al. Nat Med. 2017;23(6):703-713
- Schirripa M, et al. Clin Colorectal Cancer. 2020;S1533-0028(20)30067-0. The Cancer Genome Atlas. National Cancer Institute GDC Data Portal. Accessed on December 1, 2020. https://portal.gdc.cancer.gov/ The AACR Project GENIE Consortium, Cancer Discov, 2017;7(8):818-831
- Facchinetti F, et al. Lung Cancer. 2017 Oct;112:62-68.
- Skoulidis F, et al. Cancer Discov. 2018; 8(7): 822–35. Cho BC, et al. Cancer Res 2020;80(16 Suppl):Abstract nr CT084
- Odegaard JI, et al. Clin Cancer Res. 2018;24(15):3539-3549

Acknowledgments and Disclosures

- This study is supported by Mirati Therapeutics. Inc.
- · All authors contributed and approved this presentation
- Junhua Yu, Elifnur Yay Donderici, Nicole Zhang, Carin Espenschied and Kathryn Lang are employees and stockholders of Guardant Health Inc., which received funding from Mirati in connection with this study
- Beata Korvtowsky, Andrew Chi and Jamie Christensen are employees and shareholders of Mirati Therapeutics Inc.